

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Raman Study of InCl_3

M. S. Mathur^a; J. H. K. Ho^a; G. C. Tabisz^a

^a Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada

To cite this Article Mathur, M. S. , Ho, J. H. K. and Tabisz, G. C.(1981) 'Raman Study of InCl_3 ', *Spectroscopy Letters*, 14: 6, 395 — 404

To link to this Article: DOI: 10.1080/00387018108062599

URL: <http://dx.doi.org/10.1080/00387018108062599>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RAMAN STUDY OF InCl_3

Key Words: Raman Spectra; Indium Trichloride

M. S. Mathur, J. H. K. Ho, and G. C. Tabisz

Department of Physics, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada

Abstract

The Raman spectra of a crystalline powder of InCl_3 and of a de-ionized water solution show the presence of four bands at 300.0, 289.2, 115.6 and 87.1 cm^{-1} , thus suggesting that InCl_3 is not a perfectly planar molecule.

Introduction

The two most plausible models for InCl_3 are the pyramidal and the plane symmetrical forms, belonging to point groups C_{3v} and D_{3h} respectively. In both cases, there are four fundamentals. For C_{3v} , they are of species $2A_1 + 2E$ and all would be infrared and Raman active. For D_{3h} , they are of species $A_1' + A_2'' + 2E$: the totally symmetric vibration (A_1') would be

inactive in the infrared and the antisymmetric vibration (A_2'') would be inactive in the Raman effect.

Greenwood et al [1] reported that the vibrational spectrum of polycrystalline $InCl_3$ has three Raman active bands at 279, 127 and 87 cm^{-1} and two infrared active bands at 235 and 119 cm^{-1} . Brinkman et al [2] found three distinct Raman bands at 276, 122 and 84.5 cm^{-1} and also observed the presence of an uncertain and weak Raman band at 163 cm^{-1} . Beattie et al [3] also studied the Raman spectra of polycrystalline $InCl_3$ and their results support the observations of Greenwood et al.; they proposed that $InCl_3$ is made up of octahedrally co-ordinated indium with adjacent octahedra sharing the edges. The three degrees of freedom of a Cl atom, linked to two In atoms, were assigned to stretching and deformation modes at 279 cm^{-1} and 127 cm^{-1} respectively. The 87 cm^{-1} band was assigned to either a deformation or to the movement of an In atom in the plane containing In atoms, while maintaining the centre of symmetry. From the molecular point of view, this motion of the In atom suggests that the molecule might not be perfectly planar. Givan and Loewenschuss [4] reported the Raman and infrared spectra of monomeric $InCl_3$ in solid krypton at 20 K. Their observations under their experimental conditions support the D_{3h} planar geometry for the $InCl_3$ molecule. In an attempt to clarify the situation, we have re-investigated the Raman spectrum of $InCl_3$.

Experimental Method

Light from an argon-ion laser was focused on the crystalline powdered sample held in a glass capillary. The laser was operated in the 200 mw range. The scattered light was collected by a f/11 system and brought to a double grating

monochromator, the spectral slit width being 1 cm^{-1} . Photon-counting detection techniques were used, and the output signal was stored in a multichannel analyzer. The dark noise of the cooled RCA-31034 photomultiplier was 5 cps. The digital circuitry generating the pulses for the stepping motor of the grating drive also controlled the channel advance of the MCA. In order to average over system instabilities, the spectral region was scanned rapidly ($0.5 \text{ cm}^{-1}/\text{sec}$) and repetitively (of the order of 8 times). Experiments were also performed on 54%, 25%, and 12% solutions of InCl_3 , in de-ionized water in a single pass liquid cell. The observed spectra are shown in Figures 1, 2, 3, and 4. The dispersion is $2 \text{ cm}^{-1}/\text{channel}$.

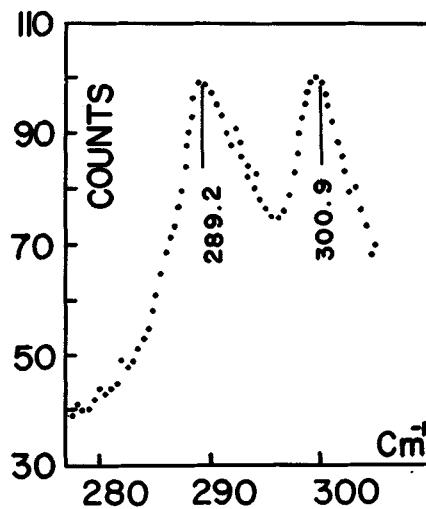


Fig. 1. The 289.2 and 300.9 cm^{-1} Raman bands of polycrystalline InCl_3 (smoothed data).

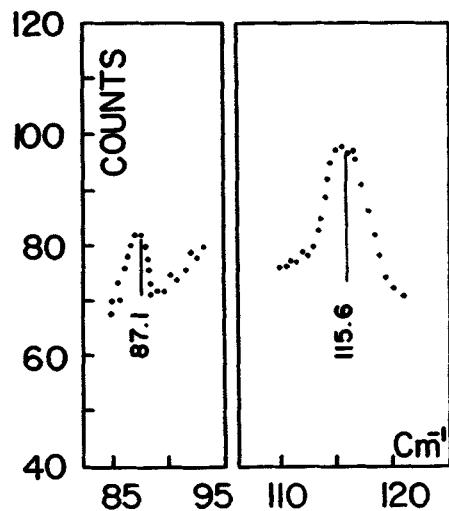


Fig. 2. The 87.1 and 115.6 cm^{-1} Raman bands of polycrystalline InCl_3 (smoothed data).

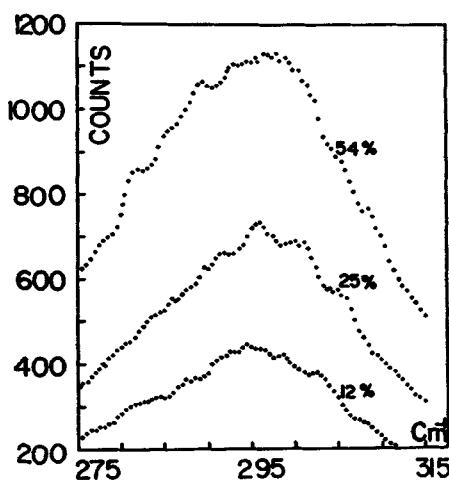


Fig. 3. Raman spectrum of 54%, 25% and 12% InCl_3 solutions in deionized water in the $275\text{--}315\text{ cm}^{-1}$ region.

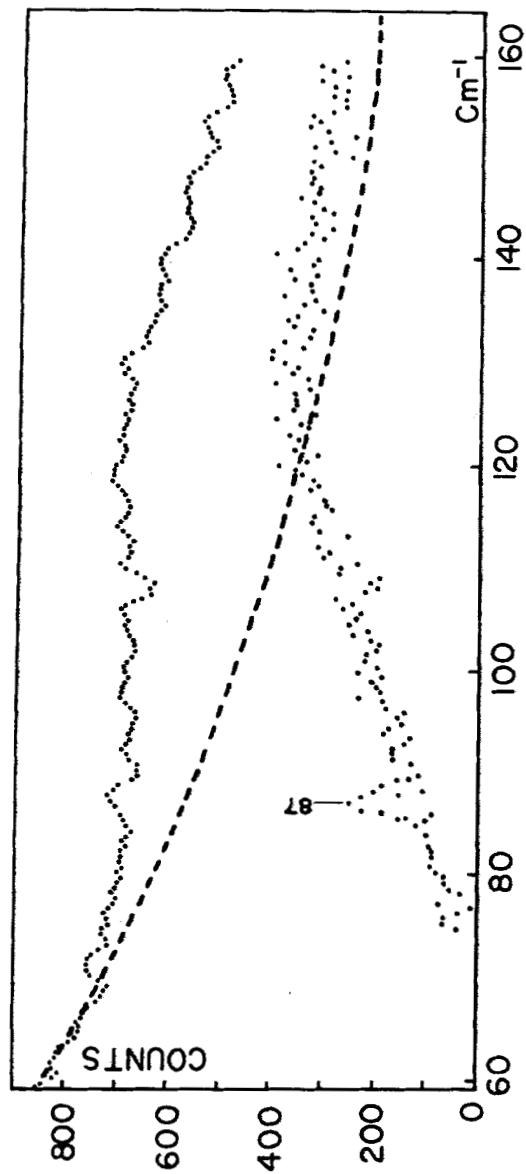


Fig. 4. Raman spectrum of 54% solution of InC_6^3 in deionized water in the 60-160 cm^{-1} region. The upper dots are the raw data, the dashed line is the background and the lower dots give the difference curve.

Analysis of Data

As is evident from Figures 1 and 2, the Raman bands of crystalline InCl_3 are relatively sharp. Figures 3 and 4 show that in the spectrum of InCl_3 solution, there are no sharp peaks, but rather very broad asymmetric structureless bands. This asymmetry in the profiles led us to suspect that they might result from the overlapping of several components. In order to facilitate the analysis, the raw data were first smoothed, using the method of Savitzky and Golay [5], and then the spectra were divided into $30\text{-}230\text{ cm}^{-1}$ and $200\text{-}400\text{ cm}^{-1}$ regions.

Because the $200\text{-}400\text{ cm}^{-1}$ region in the solid contains two bands, an attempt was made to fit the observed spectrum of the solutions to the sum of two Lorentzians. A non-linear least squares fitting technique was applied using as initial estimates the frequencies from the spectrum of crystalline InCl_3 [6]. The frequencies of the peaks, their half widths (HWHM) and their relative intensities were determined. The reduced χ^2 for the 54%, 25%, and 12% solutions were 1.73, 1.38, and 1.73, respectively. The observed bands could indeed be obtained by summing two components at frequencies closely corresponding to those found in the spectrum of the polycrystalline solid (Figure 5).

The $30\text{-}230\text{ cm}^{-1}$ region contains a broad structure superimposed on a strong background which undergoes an exponential decay from near the laser frequency. This background was subtracted and the difference curve was smoothed using a quadratic polynomial over 25 channels. For all three solutions, the final curve showed a broad peak around 120 cm^{-1} . Only in the case of the 54% solution was there evidence of a weak sharp peak at 87.1 cm^{-1} . The results are summarized in Table 1.

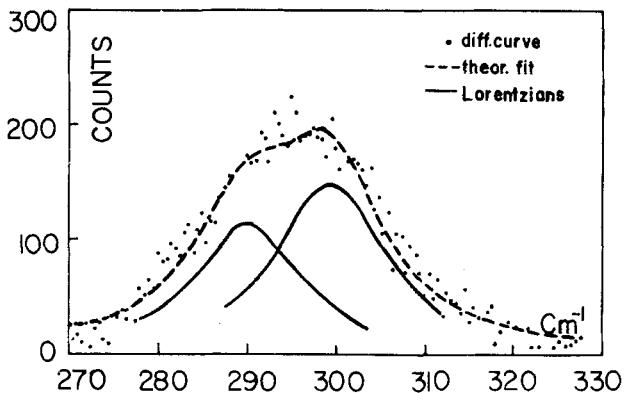


Fig. 5. Raman spectrum of the 54% solution of InCl_3 in deionized water in the $270\text{-}330\text{ cm}^{-1}$ region. The dots represent the difference curve between the raw data and the background, the heavy lines are the Lorentzians determined in the fitting process, and the dashed line is the sum of the two Lorentzians.

Results and Discussion

The Raman spectrum of crystalline InCl_3 powder has four distinct bands at 300.9 , 289.2 , 115.6 , and 87.1 cm^{-1} . Of these, the first three bands are present in the Raman spectrum of the 54%, 25%, and 12% solutions of InCl_3 in de-ionized water. The fourth band appears as a weak sharp feature in the 54% solution spectrum, but is very weak and difficult to distinguish from the background in the case of 25% and 12% solutions. The frequencies of the solid and solution spectra are in reasonable agreement indicating that InCl_3 molecule retains its structure in the solution form.

Greenwood *et al* [1] and Brinkman *et al* [2] have observed only three Raman bands at 279 , 127 , and 87 cm^{-1} , which correspond to our 289.2 , 115.6 and 87.1 cm^{-1} bands. The 300.9

Table 1. Raman Frequencies for InCl_3 Obtained by Curve Fitting to the Observed Spectra.

Sample	200-400 cm^{-1} region		30-730 cm^{-1} region	
	1st peak	2nd peak	3rd peak	4th peak
Crystalline Powder	300.9	289.2	115.6	87.1
54% 25% 12% }	298.6 ^a	784.7 ^a	[120] ^b	87
	298.5 ^a	285.9 ^a	[120] ^b	[] ^c
	299.4 ^a	289.9 ^a	[120] ^b	[] ^c

^a - Non-linear least squares fitting.^b - broad feature around 120 cm^{-1} , exact location of peak not possible to determine.^c - weak feature difficult to separate from the background.

cm^{-1} Raman band, however, has not been observed before. The 289.2 and 115.6 cm^{-1} bands are the stretching modes and the 87.1 cm^{-1} deformation motion is caused by the in-plane movement of the In atom (plane containing In atoms). The depolarized spectrum of the 54% solution indicates that the 289.2 and 300.9 cm^{-1} bands are strongly polarized. Hence, the 289.2 cm^{-1} band is due to symmetric stretching and the 300.9 cm^{-1} band must be due to some symmetric vibration of the In atom. The presence of the 300.9 and 289.2 cm^{-1} band in the spectrum of the solution suggests that the 300.9 cm^{-1} band is not splitting due to the crystal structure.

Givan and Loewenschuss [4] in their study of InCl_3 in a krypton matrix have observed three Raman bands: at 394 cm^{-1} , a triplet due to Cl isotopes at 352.5; 349.0; 345.8 cm^{-1} and a third band at 98.5 cm^{-1} . The position of these bands is not in agreement with the other data including the present study on the crystalline powder and de-ionized water solutions.

Our observations suggest that InCl_3 is not rigorously planar.

Acknowledgements

We are thankful to Dr. O. Bhatnagar of the Department of Chemistry, University of Manitoba for supplying the sample. The research was supported by a grant from the National Research Council of Canada.

References

[1] H. H. Greenwood, D. J. Prince and B. P. Straughan, *J. Chem. Soc. A7* (1968) 1694.

- [2] F. J. J. Brinkmann and H. Gerding, *Recl. Trav. Chim. Pays-Bas.* (3) 88 (1969) 275.
- [3] I. R. Beattie and J. R. Horder, *J. Chem. Soc. A*17 (1969) 2655.
- [4] A. Givon and A. Loewenschuss, *J. Mol. Struct.* 55, (1979) 163..
- [5] A. Savitzky and M. J. E. Golay, *Analytical Chemistry* (36) 8 (1964) 1627.
- [6] P. P. Bevington, "Data Reduction and Error Analysis for Physical Sciences". McGraw Hill (1969)..

Received: March 27, 1981
Accepted: April 10, 1981 .